Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 96(2): e20231336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747801

RESUMO

The disease coronavirus COVID-19 has been the cause of millions of deaths worldwide. Among the proteins of SARS-CoV-2, non-structural protein 12 (NSP12) plays a key role during COVID infection and is part of the RNA-dependent RNA polymerase complex. The monitoring of NSP12 polymorphisms is extremely important for the design of new antiviral drugs and monitoring of viral evolution. This study analyzed the NSP12 mutations detected in circulating SARS-CoV-2 during the years 2020 to 2022 in the population of the city of Manaus, Amazonas, Brazil. The most frequent mutations found were P323L and G671S. Reports in the literature indicate that these mutations are related to transmissibility efficiency, which may have contributed to the extremely high numbers of cases in this location. In addition, two mutations described here (E796D and R914K) are close and have RMSD that is similar to the mutations M794V and N911K, which have been described in the literature as influential on the performance of the NSP12 enzyme. These data demonstrate the need to monitor the emergence of new mutations in NSP12 in order to better understand their consequences for the treatments currently used and in the design of new drugs.


Assuntos
COVID-19 , Mutação , SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/genética , Brasil , Proteínas não Estruturais Virais/genética , COVID-19/virologia , COVID-19/transmissão , Mutação/genética , Humanos , Simulação por Computador
2.
An Acad Bras Cienc ; 96(2): e20231208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747841

RESUMO

The enterotoxigenic Escherichia coli (ETEC) strain is one of the most frequent causative agents of childhood diarrhea and travelers' diarrhea in low-and middle-income countries. Among the virulence factors secreted by ETEC, the exoprotein EtpA has been described as an important. In the present study, a new detection tool for enterotoxigenic E. coli bacteria using the EtpA protein was developed. Initially, antigenic sequences of the EtpA protein were selected via in silico prediction. A chimeric recombinant protein, corresponding to the selected regions, was expressed in an E. coli host, purified and used for the immunization of mice. The specific recognition of anti-EtpA IgG antibodies generated was evaluated using flow cytometry. The tests demonstrated that the antibodiesdeveloped were able to recognize the native EtpA protein. By coupling these antibodies to magnetic beads for the capture and detection of ETEC isolates, cytometric analyses showed an increase in sensitivity, specificity and the effectiveness of the method of separation and detection of these pathogens. This is the first report of the use of this methodology for ETEC separation. Future trials may indicate their potential use for isolating these and other pathogens in clinical samples, thus accelerating the diagnosis and treatment of diseases.


Assuntos
Anticorpos Antibacterianos , Escherichia coli Enterotoxigênica , Proteínas de Escherichia coli , Citometria de Fluxo , Escherichia coli Enterotoxigênica/imunologia , Animais , Camundongos , Citometria de Fluxo/métodos , Proteínas de Escherichia coli/imunologia , Anticorpos Antibacterianos/imunologia , Sensibilidade e Especificidade , Camundongos Endogâmicos BALB C , Feminino , Imunoglobulina G/imunologia
3.
J Vis Exp ; (195)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37318251

RESUMO

Immunoassays are important tests for the detection of numerous molecular targets. Among the methods currently available, the cytometric bead assay has gained prominence in recent decades. Each microsphere that is read by the equipment represents an analysis event of the interaction capacity between the molecules under test. Thousands of these events are read in a single assay, thus ensuring high assay accuracy and reproducibility. This methodology can also be used in the validation of new inputs, such as IgY antibodies, for the diagnosis of diseases. These antibodies are obtained through immunizing chickens with the antigen of interest and then extracting the immunoglobulin from the yolk of the animals' eggs; therefore, this is a painless and highly productive method for obtaining the antibodies. In addition to a methodology for the high-precision validation of the antibody recognition capacity of this assay, this paper also presents a method for extracting these antibodies, determining the best coupling conditions for the antibodies and latex beads, and determining the sensitivity of the test.


Assuntos
Anticorpos , Galinhas , Animais , Reprodutibilidade dos Testes , Imunoglobulinas , Imunoensaio , Gema de Ovo , Padrões de Referência
4.
Bioelectrochemistry ; 148: 108273, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183560

RESUMO

This paper described an impedimetric immunosensor for detecting Plasmodium falciparum histidine-rich protein 2 (PfHRP2). Antibodies from egg yolk (Ab-PfHRP2, IgY type) were linked covalently to the screen-printed gold electrodes (SPGE) surface modified with a thin film of Poly-pyrrole-pyrrole 3 carboxylic acid (P(Py-Py3COOH) to develop the sensing platform. The fabrication steps were followed by microscopic (scanning electron microscopy), spectroscopic (RAMAN spectroscopy and Energy-dispersive X-ray spectroscopy), and electrochemical (electrochemical impedance spectroscopy (EIS) and cyclic voltammetry) techniques. The determination of Ag-PfHRP2 was performed by EIS, and the BSA(bovine serum albumin)/Ab-PfHRP2(IgY)/P(Py-Py3COOH)/SPGE immunosensor recorded a linear response at 100-1000 ng mL-1 concentration range, with a limit of detection (LOD) of 27.47 ng mL-1. Its performance was confirmed by Enzyme-Linked Immuno-Sorbent Assay. The fabricated device uses a simple strategy of IgY immobilization, showing high sensitivity and good selectivity, and can be considered an alternative for carrying out malaria tests.


Assuntos
Técnicas Biossensoriais , Polímeros , Técnicas Biossensoriais/métodos , Ácidos Carboxílicos , Gema de Ovo , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Histidina , Imunoensaio/métodos , Imunoglobulinas , Limite de Detecção , Polímeros/química , Pirróis/química , Soroalbumina Bovina
5.
Exp Biol Med (Maywood) ; 247(20): 1852-1861, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35974694

RESUMO

Microsphere-based flow cytometry is a highly sensitive emerging technology for specific detection and clinical analysis of antigens, antibodies, and nucleic acids of interest. In this review, studies that focused on the application of flow cytometry as a viable alternative for the investigation of infectious diseases were analyzed. Many of the studies involve research aimed at epidemiological surveillance, vaccine candidates and early diagnosis, non-infectious diseases, specifically cancer, and emphasize the simultaneous detection of biomarkers for early diagnosis, with accurate results in a non-invasive approach. The possibility of carrying out multiplexed assays affords this technique high versatility and performance, which is evidenced in a series of clinical studies that have verified the ability to detect several molecules in low concentrations and with minimal sample volume. As such, we demonstrate that microsphere-based flow cytometry presents itself as a promising technique that can be adopted as a fundamental element in the development of new diagnostic methods for a number of diseases.


Assuntos
Antígenos , Doenças Transmissíveis , Humanos , Citometria de Fluxo/métodos , Microesferas , Antígenos/análise , Biomarcadores
6.
Mem Inst Oswaldo Cruz ; 117: e220085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36043597

RESUMO

BACKGROUND: Malaria is a disease that affects many tropical and subtropical countries, including Brazil. The use of tests for malaria detection is one of the fundamental strategies recommended by the World Health Organization for the control and eradication of the disease. The lack of diagnostic tests leads to an increase in transmission and non-reporting cases. OBJECTIVES: This work described an electrochemical immunosensor for detecting Plasmodium vivax lactate dehydrogenase antigen (Ag-PvLDH). METHODS: The device has developed by immobilising egg yolk IgY antibodies (Ab-PvLDH) on a gold electrode surface using cysteamine as linker. The immunosensor fabrication was followed by differential pulse voltammetry, and contact angle measurements were performed to characterise the modified gold electrode surface. FINDINGS: The results for Ag-PvLDH determination exhibit a linear response at 10-50 µg mL-1 concentration range, with a limit of detection of 455 ng mL-1. The excellent selectivity of the device was confirmed. MAIN CONCLUSIONS: The developed immunosensor showed a good performance, therefore, it can be considered an alternative test to detect malaria caused by P. vivax.


Assuntos
Técnicas Biossensoriais , Malária Vivax , Malária , Antígenos de Protozoários , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Ouro , Humanos , Imunoensaio/métodos , L-Lactato Desidrogenase , Limite de Detecção , Malária Vivax/diagnóstico , Plasmodium vivax
7.
Sci Rep ; 12(1): 1531, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087102

RESUMO

Malaria remains a widespread public health problem in tropical and subtropical regions around the world, and there is still no vaccine available for full protection. In recent years, it has been observed that spores of Bacillus subtillis can act as a vaccine carrier and adjuvant, promoting an elevated humoral response after co-administration with antigens either coupled or integrated to their surface. In our study, B. subtillis spores from the KO7 strain were used to couple the recombinant CSP protein of P. falciparum (rPfCSP), and the nasal humoral-induced immune response in Balb/C mice was evaluated. Our results demonstrate that the spores coupled to rPfCSP increase the immunogenicity of the antigen, which induces high levels of serum IgG, and with balanced Th1/Th2 immune response, being detected antibodies in serum samples for 250 days. Therefore, the use of B. subtilis spores appears to be promising for use as an adjuvant in a vaccine formulation.


Assuntos
Plasmodium falciparum
8.
Mem. Inst. Oswaldo Cruz ; 117: e220085, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1394476

RESUMO

BACKGROUND Malaria is a disease that affects many tropical and subtropical countries, including Brazil. The use of tests for malaria detection is one of the fundamental strategies recommended by the World Health Organization for the control and eradication of the disease. The lack of diagnostic tests leads to an increase in transmission and non-reporting cases. OBJECTIVES This work described an electrochemical immunosensor for detecting Plasmodium vivax lactate dehydrogenase antigen (Ag-PvLDH). METHODS The device has developed by immobilising egg yolk IgY antibodies (Ab-PvLDH) on a gold electrode surface using cysteamine as linker. The immunosensor fabrication was followed by differential pulse voltammetry, and contact angle measurements were performed to characterise the modified gold electrode surface. FINDINGS The results for Ag-PvLDH determination exhibit a linear response at 10-50 µg mL-1 concentration range, with a limit of detection of 455 ng mL-1. The excellent selectivity of the device was confirmed. MAIN CONCLUSIONS The developed immunosensor showed a good performance, therefore, it can be considered an alternative test to detect malaria caused by P. vivax.

9.
Exp Biol Med (Maywood) ; 246(21): 2332-2337, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34749522

RESUMO

The coronavirus disease COVID-19 has been the cause of millions of deaths worldwide. Among the SARS-CoV-2 proteins, the non-structural protein 1 (NSP1) has great importance during the virus infection process and is present in both alpha and beta-CoVs. Therefore, monitoring of NSP1 polymorphisms is crucial in order to understand their role during infection and virus-induced pathogenicity. Herein, we analyzed how mutations detected in the circulating SARS-CoV-2 in the population of the city of Manaus, Amazonas state, Brazil could modify the tertiary structure of the NSP1 protein. Three mutations were detected in the SARS-CoV-2 NSP1 gene: deletion of the amino acids KSF from positions 141 to 143 (delKSF), SARS-CoV-2, lineage B.1.195; and two substitutions, R29H and R43C, SARS-CoV-2 lineage B.1.1.28 and B.1.1.33, respectively. The delKSF was found in 47 samples, whereas R29H and R43C were found in two samples, one for each mutation. The NSP1 structures carrying the mutations R43C and R29H on the N-terminal portion (e.g. residues 10 to 127) showed minor backbone divergence compared to the Wuhan model. However, the NSP1 C-terminal region (residues 145 to 180) was severely affected in the delKSF and R29H mutants. The intermediate variable region (residues 144 to 148) leads to changes in the C-terminal region, particularly in the delKSF structure. New investigations must be carried out to analyze how these changes affect NSP1 activity during the infection. Our results reinforce the need for continuous genomic surveillance of SARS-CoV-2 to better understand virus evolution and assess the potential impact of the viral mutations on the approved vaccines and future therapies.


Assuntos
COVID-19/epidemiologia , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Brasil/epidemiologia , Humanos , Polimorfismo Genético/genética , Deleção de Sequência/genética
10.
RSC Adv ; 11(1): 408-415, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35423017

RESUMO

In the present work, we describe a novel one-step enzyme-free dual electrochemical immunosensor for the determination of histidine-rich protein 2 (Ag-PfHRP2), a specific malaria biomarker. A gold electrode (GE) was functionalized with the PfHRP2 antibody (Ab-PfHRP2) using dihexadecyl phosphate (DHP) polymer as an immobilization platform. The Ab-PfHRP2/DHP/GE sensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The developed immunosensor was employed for indirect Ag-PfHRP2 determination by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The linear range was 10-400 ng mL-1 and 10-500 ng mL-1 for EIS and DPV, while the limit of detection was 3.3 ng mL-1 and 2.8 ng mL-1, respectively. The electrochemical immunosensor was successfully applied for Ag-PfHRP2 determination in human serum samples. Its performance was compared with an ELISA test, and good correspondence was achieved. The coefficients of intra- and inter-assay variations were less than 5%. The electrochemical immunosensor is a useful and straightforward tool for in situ malaria biomarker determination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA